Glossario dei termini
Funzione
Una corrispondenza f tra due insiemi A e B che ad ogni elemento x di A associa uno ed un solo elemento y di B è chiamata funzione di A in B. La quantità variabile x si chiama variabile indipendente (o argomento della funzione), mentre la variabile y è detta variabile dipendente, perché il suo valore dipende da quello di x tramite la relazione definita dalla corrispondenza f: questo legame fra le due variabili è simbolicamente espresso dall’uguaglianza y = f (x), che si legge “y uguale a effe di x”. L’insieme A è chiamato dominio o insieme di esistenza della funzione, mentre il sottoinsieme B’ di B formato dagli elementi y che, tramite f, corrispondono ad almeno un elemento x di A, si chiama codominio della funzione. Se x e y sono entrambi numeri reali, si dice che f (x) è una funzione reale di variabile reale.
Una funzione può anche dipendere da n variabili indipendenti: in questo caso, si parla di funzione di n variabili. Ad esempio, per una funzione di due variabili indipendenti x e y, una variabile z si dice funzione di x e y, e si scrive z = f (x, y), se ad ogni coppia ordinata di valori di x e y, appartenenti all’insieme di esistenza della funzione, corrisponde uno ed un solo valore di z.